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1
CONCURRENT STORE AND LOAD
OPERATIONS

BACKGROUND

1. Field of the Invention

This disclosure relates to microprocessors, and more
particularly to techniques for supporting concurrent stores
and loads in a processor.

2. Description of the Related Art

Modern out-of-order processors are often configured to
execute load and store instructions out-of-order, and also
permit loads to access memory in a speculative manner.
Speculatively-executed loads and stores are typically held in
queues until necessary criteria is met to make the loads and
stores architecturally visible (i.e., visible to software). In a
multi-processor environment, the order rules of memory
accesses by various processors is defined by the memory
consistency model specified by a given instruction set archi-
tecture (ISA). The weakly-ordered model is one such
memory consistency model.

Modern microprocessors are typically coupled to one or
more levels of a cache hierarchy in order to reduce the
latency of the microprocessor’s request for data in memory.
The request may result from a read or a write operation
during the execution of one or more software applications.
Generally, a cache may store multiple cache lines, where a
cache line holds several bytes of data in contiguous memory
locations. A cache line may be treated as a unit for coherency
purposes. In addition, a cache line may be a unit of alloca-
tion and deallocation in the cache. By having a unit of
allocation and deallocation of several bytes in a cache,
memory accesses may be more efficient and have a smaller
latency than having a unit of one or a few bytes. As used
herein, a “line” is a set of bytes stored in contiguous memory
locations, which are treated as a unit for coherency purposes.
As used herein, the terms “cache block™, “block”, “cache
line”, and “line” are interchangeable.

A load operation typically takes precedence over a store
operation if a conflict exists between the two operations.
However, delaying store operations which conflict with load
operations can degrade processor performance. A “load
memory operation” or “load operation” may refer to a
transfer of data from memory or cache to a processor, and a
“store memory operation” or “store operation” may refer to
a transfer of data from a processor to memory or cache.
“Load operations” and “store operations” may be more
succinctly referred to herein as “loads™ and “stores”, respec-
tively.

A load/store unit often includes a queue for buffering
stores that are waiting to be written to the memory system.
This queue may be dedicated to stores or alternatively, the
queue may buffer both stores and loads. With loads taking
precedence over stores, a large number of stores may be
waiting in the queue at any given time. To accommodate a
large number of stores, the size (i.e., number of entries) of
the queue may be increased. Each entry in the queue often
includes storage for data, address, and various read ports and
cam ports. Accordingly, increasing the size of the queue can
be expensive with respect to hardware requirements, timing
impact, and power utilization.

SUMMARY

Systems, processors and methods for supporting concur-
rent load and store operations are disclosed.
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In one embodiment, a processor pipeline may include a
load-store unit (LSU), and the LSU may include at least a
level-one (I.1) data cache, a store queue, and a load queue.
The L1 data cache may be structured to have a plurality of
banks. The index portion of a generated address for a given
load or store operation may be used to access one of these
banks. The LSU may allow a partial store operation to the [.1
data cache concurrently with a load operation in the same
clock cycle.

In one embodiment, a first store operation may be buff-
ered in the store queue. After the first store after has met
memory ordering requirements, the first store may attempt
to write to the L1 data cache. If there are no concurrent load
operations trying to access the L1 data cache, then the store
may complete the full write in this attempt. If there is a
concurrent load trying to access the [.1 data cache, then the
store may skip the write to all banks of the cache that have
a conflict with the load. The store may still write to the banks
of the cache for which there is not a conflict with a load. This
allows the first store to perform a partial write in the first
attempt simultaneously with one or more loads.

After a partial write of the first store operation is per-
formed, a store mask corresponding to the first store may be
updated to indicate which portions of the first store were
written in the first attempt. The first store may attempt to
write the remaining portions to the cache in subsequent
clock cycles, and if there are conflicts with other loads on
these subsequent clock cycles, the first store may perform
another partial write and update the store mask accordingly.
On subsequent attempts, the first store will only attempt to
write data which was not written to the cache in previous
attempts.

These and other features and advantages will become
apparent to those of ordinary skill in the art in view of the
following detailed descriptions of the approaches presented
herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the methods and
mechanisms may be better understood by referring to the
following description in conjunction with the accompanying
drawings, in which:

FIG. 1 is a block diagram that illustrates one embodiment
of a load/store unit (LSU) in a processor.

FIG. 2 is a block diagram that illustrates one embodiment
of a pipeline of a processor.

FIG. 3 is a block diagram illustrating one embodiment of
a portion of an integrated circuit (IC).

FIG. 4 is a block diagram illustrating one embodiment of
a cache.

FIG. 5 is a block diagram illustrating one embodiment of
supported concurrent memory operations.

FIG. 6 is a block diagram illustrating one embodiment of
conflicting memory operations.

FIG. 7 is a block diagram illustrating one embodiment of
non-conflicting load and store operations.

FIG. 8 is a block diagram illustrating one embodiment of
conflicting load and store operations.

FIG. 9 is a block diagram illustrating one embodiment of
a portion of a load-store unit (LSU).

FIG. 10 is a generalized flow diagram illustrating one
embodiment of a method for allowing partial store writes
opportunistically in the presence of loads.

FIG. 11 is a block diagram of one embodiment of a
system.
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FIG. 12 is a block diagram of one embodiment of a
computer readable medium.

DETAILED DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various
embodiments may be practiced without these specific
details. In some instances, well-known structures, compo-
nents, signals, computer program instructions, and tech-
niques have not been shown in detail to avoid obscuring the
approaches described herein. It will be appreciated that for
simplicity and clarity of illustration, elements shown in the
figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

This specification includes references to “one embodi-
ment”. The appearance of the phrase “in one embodiment”
in different contexts does not necessarily refer to the same
embodiment. Particular features, structures, or characteris-
tics may be combined in any suitable manner consistent with
this disclosure. Furthermore, as used throughout this appli-
cation, the word “may” is used in a permissive sense (i.e.,
meaning having the potential to), rather than the mandatory
sense (i.e., meaning must). Similarly, the words “include”,
“including”, and “includes” mean including, but not limited
to.

Terminology. The following paragraphs provide defini-
tions and/or context for terms found in this disclosure
(including the appended claims):

“Comprising.” This term is open-ended. As used in the
appended claims, this term does not foreclose additional
structure or steps. Consider a claim that recites: “A processor
comprising a cache . . . . ” Such a claim does not foreclose
the processor from including additional components (e.g., a
load-store unit, a fetch unit, an execution unit).

“Configured To.” Various units, circuits, or other compo-
nents may be described or claimed as “configured to”
perform a task or tasks. In such contexts, “configured to” is
used to connote structure by indicating that the units/
circuits/components include structure (e.g., circuitry) that
performs the task or tasks during operation. As such, the
unit/circuit/component can be said to be configured to
perform the task even when the specified unit/circuit/com-
ponent is not currently operational (e.g., is not on). The
units/circuits/components used with the “configured to”
language include hardware—for example, circuits, memory
storing program instructions executable to implement the
operation, etc. Reciting that a unit/circuit/component is
“configured to” perform one or more tasks is expressly
intended not to invoke 35 U.S.C. §112, sixth paragraph, for
that unit/circuit/component. Additionally, “configured to”
can include generic structure (e.g., generic circuitry) that is
manipulated by software and/or firmware (e.g., an FPGA or
a general-purpose processor executing software) to operate
in a manner that is capable of performing the task(s) at issue.
“Configured to” may also include adapting a manufacturing
process (e.g., a semiconductor fabrication facility) to fabri-
cate devices (e.g., integrated circuits) that are adapted to
implement or perform one or more tasks.

“First,” “Second,” etc. As used herein, these terms are
used as labels for nouns that they precede, and do not imply
any type of ordering (e.g., spatial, temporal, logical, etc.).
For example, the terms “first” and “second” operations can
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be used to refer to any two operations. Still further, the terms
“first” and “second” cache lines can be used to refer to any
two cache lines.

“Based On.” As used herein, this term is used to describe
one or more factors that affect a determination. This term
does not foreclose additional factors that may affect a
determination. That is, a determination may be solely based
on those factors or based, at least in part, on those factors.
Consider the phrase “determine A based on B.” While B may
be a factor that affects the determination of A, such a phrase
does not foreclose the determination of A from also being
based on C. In other instances, A may be determined based
solely on B.

Referring now to FIG. 1, a block diagram illustrating one
embodiment of a load/store unit (LSU) 100 in a processor is
shown. In the illustrated embodiment, LSU 100 includes
load queue 110, store queue 120, and data cache 130. In the
illustrated embodiment, LSU 100 is configured to receive
instruction information from an instruction processing pipe-
line (of which LSU 100 may be considered a part) and is
coupled to a higher-level cache (relative to data cache 130)
and/or a memory.

In one embodiment, load queue 110 includes multiple
entries and is configured to store information associated with
load instructions. It is noted that the terms “instruction” and
“operation” may be used interchangeably herein. Load
instructions stored in load queue 110 may be speculatively
executed. Each entry in load queue 110 may include address
information corresponding to the target location of a load,
data associated with the load, and status information, for
example.

Store queue 120 may similarly include multiple entries
configured to store information associated with store instruc-
tions. Store instructions stored in store queue 120 may be
posted stores. Posted stores may be retired from a comple-
tion unit of a processor, but may reside in store queue 120
while waiting to actually commit their data. Each entry in a
store queue 120 may include address information corre-
sponding to the target location of a store, data associated
with the store, and status information, for example.

Load queue 110 and store queue 120 may be configured
to queue instructions in program order. However, load and
store instructions may be executed out of program order
earlier in the processing pipeline. As used herein, the term
“queue” refers to a storage element having a plurality of
entries. Queues are often used to store data (e.g., data
associated with instructions) while waiting for processing
resources to become available or for particular events to
occur. In some embodiments, queues are used to store
instruction information in program order even though the
instructions may be performed out of program order. Thus,
queues do not always behave in a first-in-first-out (FIFO)
manner. For example, if instruction information arrives out
of program order but is removed in program order, the
information may not be dequeued (or retired) in the same
order in which it is enqueued. As used herein, the term
“storage element” refers to any element configured to store
one or more values in a volatile or non-volatile manner.
Examples of storage elements include: registers, memories,
latches, disks, etc.

Data cache 130 may be a level 1 (L.1) data cache, for
example. Data cache 130 may be a write-back or write-
through cache. Data cache 130 may include a plurality of
cache indices and ways. Data cache 130 may be indexed
using index bits of a memory address and a matching way
may be determined using tag bits of a memory address. Data
cache 130 may be physically indexed and physically tagged,
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virtually indexed and virtually tagged, or virtually indexed
and physically tagged. LSU 100 may be configured to fetch
data from a higher-level cache or memory when there is a
cache miss in data cache 130. LSU 100 may also be
configured to maintain coherency with other processor
cores. For example, when another processor core writes to a
cache line that is resident in data cache 130, LSU 100 may
evict or invalidate the cache line.

Data cache 130 may use banking as a way to present a
multi-ported interface to the other logic in LSU 100. Bank-
ing refers to breaking down the total memory capacity of
data cache 130 into smaller chunks called banks. Each bank
can support a single transaction, either a load or a store.
Multiple logical banks may be accessed in parallel to
read/write independent addresses thereby giving an impres-
sion of multiple ports to interface logic.

In one embodiment, a load or store instruction may take
the form shown below:

ST <size><datareg> [ Address]

LD <size><datareg> [Address]

The operand <size> denotes the size in bytes of the
access. For stores, <dataReg> is the register which contains
the data to be written at [Address]. For loads, <dataReg> is
the register where the data read out of [Address] needs to be
sent.

In one embodiment, values from store instructions may
not be committed to the memory system when they execute.
Instead, the store instructions, including the memory address
and store data, may be buffered in store queue 120 until they
reach the commit point. At commit time, the store may be
deemed to be safe to write to data cache 130 thereby
avoiding any data hazards (e.g., write after read dependence,
write after write dependence) where an earlier load receives
an incorrect value.

Turning now to FIG. 2, a block diagram of a pipeline of
a processor 200 is shown. Processor 200 is one example of
a processor core, and processor 200 may be utilized within
a processor complex, such as processor complex 312 of FIG.
3. In one embodiment, each of CPUs 314 and 316 of FIG.
3 may include the components and functionality of proces-
sor 200.

Processor 200 includes instruction fetch unit (IFU) 205
which includes an instruction cache 210. IFU 205 is coupled
to an instruction processing pipeline that begins with a
decode unit 215 and proceeds in turn through map unit 220,
dispatch unit 225, and issue unit 230. Issue unit 230 is
coupled to issue instructions to any of a number of instruc-
tion execution resources including execution unit(s) 260,
load/store unit (LSU) 255, and/or floating-point/graphics
unit (FGU) 250. These instruction execution resources are
coupled to working register file 285. Additionally, LSU 255
is coupled to cache/memory interface 280. Completion unit
235 is coupled to IFU 205, map unit 220, working register
file 285, and the outputs of any number of instruction
execution resources.

In the following discussion, embodiments of each of the
structures of the illustrated embodiment of processor 200 are
described. However, it is noted that the illustrated embodi-
ment is merely one example of how processor 200 may be
implemented. Alternative configurations and variations are
possible and contemplated.

Instruction fetch unit 205 may be configured to provide
instructions to the rest of the pipeline for execution. The
concept of “execution” is broad and may refer to 1) pro-
cessing of an instruction throughout an execution pipeline
(e.g., through fetch, decode, execute, and retire stages) and
2) processing of an instruction at an execution unit or
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execution subsystem of such a pipeline (e.g., an integer
execution unit or a load/store unit). The latter meaning may
also be referred to as “performing” the instruction. Thus,
“performing” a load instruction refers to retrieving the value
of the load’s target location, which may, in some embodi-
ments, be accomplished by a circuit at an execute stage of
a pipeline (e.g., by a load/store unit). Conversely, “execut-
ing” the load instruction may refer to the entirety of opera-
tions that occur throughout the pipeline as a result of the load
instruction. Instructions may be speculatively executed, and
may be flushed and replayed if one or more conditions are
not as speculated.

Further, as used herein, the term “target” in the context of
load and store instructions refers to the location from which
a load instruction should read or the location to which a store
instruction should write. A target may be identified by a
virtual address and/or a physical address. In some situations,
instructions with the same target may not actually access the
same storage element. For example, an older store may write
information to a target location in a memory (or a cache)
while a load reads from the target by forwarding the data
from the store without accessing a cache or memory. In this
exemplary situation the load and the store both target the
same target location (e.g., using the same memory address),
but do not use the same storage element to access the target
location. Further, an instruction may “target” a cache line
when it targets a location in the cache line. Also, snoops
typically target a cache on a cache-line basis.

In one embodiment, IFU 205 is configured to fetch
instructions from instruction cache 210 and buffer them for
downstream processing, request data from a cache or
memory through cache/memory interface 280 in response to
instruction cache misses, and predict the direction and target
of control transfer instructions (e.g., branches). In some
embodiments, IFU 205 may include a number of data
structures in addition to instruction cache 210, such as an
instruction translation lookaside buffer (ITLB), instruction
buffers, and/or structures configured to store state that is
relevant to thread selection and processing (in multi-
threaded embodiments of processor 200).

In one embodiment, decode unit 215 is configured to
prepare fetched instructions for further processing. Decode
unit 215 may be configured to identify the particular nature
of an instruction (e.g., as specified by its opcode) and to
determine the source and destination registers encoded in an
instruction, if any. In some embodiments, decode unit 215 is
configured to detect certain dependencies among instruc-
tions and/or to convert certain complex instructions to two
or more simpler instructions for execution.

As used herein, the term ““instruction” refers to informa-
tion indicative of one or more operations to be performed by
a processor pipeline. An “operation” may include a process-
ing element doing nothing during a given processing cycle,
e.g., based on a “nop” instruction or a conditional instruction
for which the condition is false. An instruction may be
defined by a given ISA. An instruction may also be defined
by a microarchitecture rather than tied to a particular ISA.
For example, decode unit 215 may be configured to decode
an ISA instruction into one or more micro-operations, which
may also be referred to as “instructions” when they specify
an operation to be performed by a processor pipeline. Thus,
a “load instruction” may or may not be defined by an ISA.
A load instruction includes information indicative that a load
operation is to be performed and typically includes infor-
mation indicating a load’s target memory location.

As used herein, the term “processing element” refers to
various elements or combinations of elements configured to
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execute program instructions. Processing elements include,
for example, circuits such as an ASIC (Application Specific
Integrated Circuit), portions or circuits of individual proces-
sor cores, entire processor cores, individual processors,
programmable hardware devices such as a field program-
mable gate array (FPGA), and/or larger portions of systems
that include multiple processors, as well as any combina-
tions thereof.

Register renaming may facilitate the elimination of cer-
tain dependencies between instructions (e.g., write-after-
read or “false” dependencies), which may in turn prevent
unnecessary serialization of instruction execution. In one
embodiment, map unit 220 is configured to rename the
architectural destination registers specified by instructions
of a particular instruction set architecture (ISA) by mapping
them to a physical register space, resolving false dependen-
cies in the process. In some embodiments, map unit 220
maintains a mapping table that reflects the relationship
between architectural registers and the physical registers to
which they are mapped. Map unit 220 may also maintain a
“free list” of available (i.e. currently unmapped) physical
registers.

Once decoded and renamed, instructions may be ready to
be scheduled for performance. In the illustrated embodi-
ment, dispatch unit 225 is configured to schedule (i.e.,
dispatch) instructions that are ready for performance and
send the instructions to issue unit 230. In one embodiment,
dispatch unit 225 is configured to maintain a schedule queue
that stores a number of decoded and renamed instructions as
well as information about the relative age and status of the
stored instructions. For example, taking instruction depen-
dency and age information into account, dispatch unit 225
may be configured to pick one or more instructions that are
ready for performance.

Issue unit 230 may be configured to provide instruction
sources and data to the various execution units for picked
(i.e. scheduled or dispatched) instructions. In one embodi-
ment, issue unit 230 includes reservation stations for storing
instructions while waiting for their operands and/or for other
processing resources to become available. In other embodi-
ments, issue unit 230 provides instructions to reservation
stations distributed among FGU 250, L.SU 255, execution
unit(s) 260, etc. In one embodiment, issue unit 230 is
configured to read source operands from the appropriate
source, which may vary depending upon the state of the
pipeline. For example, if a source operand depends on a
prior instruction that is still in the execution pipeline, the
operand may be bypassed or forwarded directly from the
appropriate execution unit result bus. Results may also be
sourced from register files representing architectural (i.e.,
user-visible) as well as non-architectural state. In the illus-
trated embodiment, processor 200 includes a working reg-
ister file 285 that may be configured to store instruction
results (e.g., integer results, floating-point results, and/or
condition code results) that have not yet been committed to
architectural state, and which may serve as the source for
certain operands. The various execution units may also
maintain architectural integer, floating-point, and condition
code state from which operands may be sourced.

Instructions issued from issue unit 230 may proceed to
one or more of the illustrated execution units to be per-
formed. In one embodiment, each of execution unit(s) 260 is
similarly or identically configured to perform certain inte-
ger-type instructions defined in the implemented ISA, such
as arithmetic, logical, and shift instructions. In some
embodiments, architectural and non-architectural register
files are physically implemented within or near execution

10

15

20

25

30

35

40

45

50

55

60

65

8

unit(s) 260. It is contemplated that in some embodiments,
processor 200 may include any number of integer execution
units, and the execution units may or may not be symmetric
in functionality.

LSU 255 may be configured as described above with
reference to FIG. 1. Further, LSU 255 may be configured to
process data memory references, such as integer and float-
ing-point load and store instructions and other types of
memory reference instructions. In the illustrated embodi-
ment, [.SU 255 includes data cache 265, load queue 270, and
store queue 275. LSU 255 may be configured to detect
misses in data cache 265 and to responsively request data
from a cache or memory through cache/memory interface
280. In some embodiments, LSU 255 may implement a
hardware prefetcher configured to predict and prefetch data
that is likely to be used in the future, in order to increase the
likelihood that such data will be resident in a data cache
when it is needed.

In some embodiments, load queue 270 and store queue
275 are respectively configured to queue load and store
instructions until their results can be committed to the
architectural state of the processor. Instructions in the queues
may be speculatively performed, non-speculatively per-
formed, or waiting to be performed. Each queue may include
a plurality of entries, which may store loads/stores in pro-
gram order.

In various embodiments, LSU 255 may implement a
variety of structures configured to facilitate memory opera-
tions. For example, LSU 255 may implement a data TLB to
cache virtual data address translations. LSU 255 may also
include hardware configured to support atomic load-store
instructions, memory-related exception detection, and read
and write access to special-purpose registers (e.g., control
registers).

Floating-point/graphics unit (FGU) 250 may be config-
ured to perform and provide results for certain floating-point
and graphics-oriented instructions defined in the imple-
mented ISA. For example, in one embodiment FGU 250
implements single- and double-precision floating-point
arithmetic instructions compliant with the IEEE floating-
point standards, such as add, subtract, multiply, divide, and
certain transcendental functions.

In the illustrated embodiment, completion unit 235
includes reorder buffer (ROB) 240 and coordinates transfer
of speculative results into the architectural state of processor
200. Entries in ROB 240 may be allocated in program order.
Completion unit 235 may include other elements for han-
dling completion/retirement of instructions and/or storing
history including register values, etc. As used herein, the
terms “complete” and “completion” in the context of an
instruction refer to commitment of the instruction’s result(s)
to the architectural state of a processor or processing ele-
ment. For example, in one embodiment, completion of an
add instruction includes writing the result of the add instruc-
tion to a destination register. Similarly, completion of a load
instruction includes writing a value (e.g., a value retrieved
from a cache or memory) to a destination register or a
representation thereof.

In some embodiments, speculative results of instructions
may be stored in ROB 240 before being committed to the
architectural state of processor 200, and confirmed results
may be committed in program order. Entries in ROB 240
may be marked as ready to complete when their results are
allowed to be written to the architectural state. Completion
unit 235 may also be configured to coordinate instruction
flushing and/or replaying of instructions. “Flushing,” as
used herein, refers to removing an instruction from execu-



US 9,448,936 B2

9

tion in a processor pipeline. Accordingly, execution of an
instruction that is flushed is not completed. For example, an
instruction may be flushed because it was speculatively
fetched based on a mispredicted branch. “Replaying” or
“retrying” as used herein, refers to re-performing a specu-
latively-performed or waiting instruction. For example, a
speculatively-performed load from a particular location in
memory may be re-performed in response to detecting a
store to the particular location that is earlier in program order
than the load. Replaying or retrying may occur after a flush
or independently of a flush. Flushing and replaying may
involve rewinding execution of an instruction. “Rewinding,”
as used herein, refers to undoing operations performed
during execution of an instruction. For example, rewinding
may include un-mapping physical registers and destination
registers, marking results as invalid, removing entries from
ROB 240, etc.

In one embodiment, completion unit 235 is configured to
retire/remove some store instructions from ROB 240 and
post them to store queue 275 before the store instructions
have actually written their store-data. This may improve
processing speed by allowing other instructions to retire
instead of waiting for stores to complete. Stores may often
complete slowly since they may wait for a write to a cache
or memory and may require coherency checks. Posted store
instructions may reside in store queue 275 until they have
actually written their results (after completion unit 235 has
determined that the store instructions have not caused any
exceptions and dependencies are resolved). Thus, posted
store instructions may not be considered completed until
they are removed from store queue 275.

Turning now to FIG. 3, a block diagram illustrating one
embodiment of a portion of an integrated circuit (IC) is
shown. In the illustrated embodiment, IC 300 includes a
processor complex 312, memory controller 322, and
memory physical interface circuits (PHY's) 324 and 326. It
is noted that IC 300 may also include many other compo-
nents not shown in FIG. 3. In various embodiments, IC 300
may also be referred to as a system on chip (SoC), an
application specific integrated circuit (ASIC), or an appara-
tus.

Processor complex 312 may include central processing
units (CPUs) 314 and 316, level two (L.2) cache 318, and bus
interface unit (BIU) 320. In other embodiments, processor
complex 312 may include other numbers of CPUs. CPUs
314 and 316 may also be referred to as processors or cores.
It is noted that processor complex 312 may include other
components not shown in FIG. 3.

The CPUs 314 and 316 may include circuitry to execute
instructions defined in an instruction set architecture. Spe-
cifically, one or more programs comprising the instructions
may be executed by CPUs 314 and 316. Any instruction set
architecture may be implemented in various embodiments.
For example, in one embodiment, the ARM™ instruction set
architecture (ISA) may be implemented. Other ISA’s may
include the PowerPC™ instruction set, the MIPS™ instruc-
tion set, the SPARC™ instruction set, the x86 instruction set
(also referred to as 1A-32), the [A-64 instruction set, etc.
Other types of ISA’s may also be utilized, including custom-
designed or proprietary ISA’s.

In one embodiment, each instruction executed by CPUs
314 and 316 may be associated with a program counter
address (PC) value. Also, one or more architectural registers
may be specified within some instructions for reads and
writes. These architectural registers may be mapped to
actual physical registers by a register rename unit. Further-
more, some instructions (e.g., ARM Thumb instructions)
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may be broken up into a sequence of instruction operations
(or micro-ops), and each instruction operation of the
sequence may be referred to by a unique micro-op (or vop)
number.

Each of CPUs 314 and 316 may also include a level one
(L1) cache (not shown), and each .1 cache may be coupled
to .2 cache 318. Other embodiments may include additional
levels of cache (e.g., level three (I.3) cache). In one embodi-
ment, [.2 cache 318 may be configured to cache instructions
and data for low latency access by CPUs 314 and 316. The
L2 cache 318 may comprise any capacity and configuration
(e.g. direct mapped, set associative). [.2 cache 318 may be
coupled to memory controller 322 via BIU 320. BIU 320
may also include various other logic structures to couple
CPUs 314 and 316 and L2 cache 318 to various other
devices and blocks.

Memory controller 322 may include any number of
memory ports and may include circuitry configured to
interface to memory. For example, memory controller 322
may be configured to interface to dynamic random access
memory (DRAM) such as synchronous DRAM (SDRAM),
double data rate (DDR) SDRAM, DDR2 SDRAM, Rambus
DRAM (RDRAM), etc. Memory controller 322 may also be
coupled to memory physical interface circuits (PHY's) 324
and 326. Memory PHYs 324 and 326 are representative of
any number of memory PHYs which may be coupled to
memory controller 322. Memory PHY's 324 and 326 may be
configured to interface to memory devices (not shown).

It is noted that other embodiments may include other
combinations of components, including subsets or supersets
of the components shown in FIG. 3 and/or other compo-
nents. While one instance of a given component may be
shown in FIG. 3, other embodiments may include two or
more instances of the given component. Similarly, through-
out this detailed description, embodiments that include only
one instance of a given component may be used even if
multiple instances are shown.

Turning now to FIG. 4, a block diagram of one embodi-
ment of a cache is shown. In one embodiment, cache 400
may be utilized as cache 130 of FIG. 1. In other embodi-
ments, cache 400 may be utilized as other types of caches
within a system, processor, or apparatus. Cache 400 may
utilize any type of storage element technology depending on
the embodiment. For example, in one embodiment, cache
400 may utilize static random access memory (SRAM)
modules for its storage elements.

Cache 400 may be a multi read-ported cache so as to
handle multiple read requests concurrently. Multiple read
ports for cache 400 coincide with a large number of physical
banks in order to reduce load-load read conflict. Cache 400
includes multiple banks such that each cache line is broken
down into multiple banks, and each bank may be accessed
independently. The size of the bank may vary depending on
the embodiment. In one embodiment, the size of the banks
in cache 400 may be one byte.

Each bank shown in cache 400 may allow a single access
(either read or write) in every cycle. However, a concurrent
read and write request to the same bank can lead to data
corruption. Accordingly, load and store operations to the
same bank may be arbitrated and scheduled to avoid a
conflict.

Referring now to FIG. 5, a block diagram of one embodi-
ment of allowed concurrent memory operations is shown.
Three memory operations targeting cache 500 are shown in
FIG. 5. These memory operations include Load 1 (LD 1),
Load 2 (LD 2), and Store 1 (ST 1). Load 1 accesses banks
0 and 1, Load 2 accesses banks 2 and 3, and Store 1 access
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banks 4 and 5. Since none of these memory operations
overlap with a separate memory operation, these three
memory operations are allowed to access cache 500 simul-
taneously. While cache 500 is shown as having six banks in
FIG. 5, it should be understood that cache 500 may have any
number of banks, depending on the embodiment.

In one embodiment, cache 500 may be located within a
load-store unit. Detection logic may be included as part of
the load-store unit to detect whether concurrent memory
operations conflict with each other. In one embodiment, the
detection logic may be included within cache 500. In another
embodiment, the detection logic may be located within the
load-store unit and external to cache 500. In other embodi-
ments, the detection logic may be located elsewhere within
the host processor.

In one embodiment, a common flow for reading from
cache 500 may be the following:

Load: <Generate Address>—=<Decode
Address>—<Locate physical bank(s) to read>—<Read
bank>—<Write to register>

In one embodiment, a common flow for writing from
cache 500 may be the following:

Store: <Get address from Store Queue>—<Decode
Address>—<Locate physical bank(s) to write>—><Write
bank(s)>

As the operating frequency of micro-processors continues
to increase, and as the timing sensitivity of cache and
memory accesses increases, it may be difficult to cancel a
write operation late in case a concurrent read operation is
found to collide on some of the banks in the two accesses.
Accordingly, coarse scheduling techniques may be imple-
mented in the processor micro-architecture.

One such technique involves stalling writes to the [.1 data
cache in the presence of loads irrespective of the physical
banks being accessed. This technique serializes accesses of
the L1 data cache for load and store operations. A second
technique involves employing a coarse conflict detection
scheme. A store operation may be dropped in case a conflict
is perceived. The efficiency of this technique depends on the
granularity at which collisions are detected. A third tech-
nique involves employing a precise conflict detection
scheme in which a store operation is dropped in case of a
true conflict. A fourth technique allows partial store writes to
the L1 data cache opportunistically in the presence of loads.

Turning now to FIG. 6, a block diagram of one embodi-
ment of conflicting memory operations is shown. Cache 600
is shown in FIG. 6 as including six banks. As previously
noted, cache 600 may have any number of banks depending
on the embodiment. The operations shown in FIG. 6 include
Load 1, Load 2, and Store 1. Load 1 accesses banks 0 and
1, Load 2 accesses banks 2 and 3, and Store 1 accesses banks
3 and 4. Therefore, there is a conflict in bank 3 between Load
2 and Store 1, and these two operations are not allowed to
access cache 600 in the same cycle.

One approach to deal with this conflict is to allow Load
2 to access cache 600 in a first clock cycle and then to allow
Store 1 to access cache 600 in a subsequent clock cycle.
However, this approach treats Store 1 as an all or nothing
operation. Another approach would allow Store 1 to write to
all banks of cache 600 for which there are no conflicts with
other operations. For example, a partial write of Store 1 may
be performed concurrently with Load 2. The partial write of
Store 1 may be to bank 4 since there are no other concurrent
operations to bank 4. A mask may be maintained corre-
sponding to Store 1, and after the partial write, this mask
may be updated to indicate that bank 4 was written but bank
3 still needs to be written.
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In one embodiment, partial writes of store operations may
be performed to a cache in the presence of loads. When a
store has met memory ordering requirements, the store may
be ready to write to the cache, and at this point, the store will
attempt to write to the cache. If there are no concurrent loads
trying to access the cache, then the store will complete in this
attempt. If there are concurrent loads, the store will skip the
write to all banks that have a conflict with loads. Banks that
do not have a conflict with loads will get written by the store.
This scheme allow for partial writes of stores in individual
attempts.

In one embodiment, every store operation may have a
mask to indicate the data portions which the store intends to
write to the cache. The size of the mask may be based on the
access size of the operation and the size of the bank. For
example, in one embodiment, the size of a bank may be one
byte, and the mask may be a byte-mask. In other embodi-
ments, other bank sizes may be employed, and the size and
structure of the mask may be adjusted accordingly. For every
attempt to write a given store operation to the cache, the
mask may be updated to clear the portions that did not have
a bank conflict with a concurrent load and thus were
successfully written. The given store operation may attempt
to write to the cache on subsequent cycles but only for the
portions that were not written in previous attempts. These
portions that have yet to be written may be indicated by the
values of corresponding indicators in the mask.

Using these techniques, a given store operation will be
able to write all of its data to the cache in one or more
attempts depending on the load operations that are flowing
down the pipeline during those attempts. These techniques
are tolerant to any intermittent stalls in the store pipeline,
which may add cycles in between successive attempts. The
mask indicates which portions of the given store operation
were not written in a previous attempt, allowing only those
portions that need to be written to be attempted in a
successive cycle. The performance for load operations is
unaffected by these techniques for making store operations
more efficient.

Referring now to FIG. 7, a block diagram of one embodi-
ment of non-conflicting load and store operations is shown.
As shown, the load and store access non-overlapping banks
of cache 700A, allowing the load and store to access the
cache concurrently. It is noted that the load operation targets
a first cache line (Cache Line 1) and the store operation
targets a second cache line (Cache Line 2). The load
operation targets banks 0-3 of cache 700A while the store
operation targets blocks 5-8. Therefore, the store operation
will be able to write all of its portions to cache 700A in the
first attempt. Cache 700B represents the cache after the load
operation and store operation were implemented.

Turning now to FIG. 8, a block diagram of one embodi-
ment of conflicting load and store operations is shown. The
load operation targets banks 3-6 of a first cache line (Cache
Line 1) of cache 800A while the store operation targets
banks 1-8 of a second cache line (Cache Line 2) of cache
800A. Therefore, since there is a conflict between the load
operation and the store operation, priority will be given to
the load operation. Mask 805 A represents the store operation
mask before the first attempt to write the store operation to
cache 800 is made. Mask 805A may have an indicator for
each portion of the store operation, and each portion corre-
sponds to a targeted bank of cache 800. As can be seen, prior
to the store operation being written to cache 800A, all bits
of mask 805A are set to ‘1’ indicating that none of the data
from the store operation has yet to be written to cache 800A.
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In the first attempt to write the store operation, the store
operation will write to those banks that do not have a conflict
(banks 1-2 and 7-8) while simultaneously the load operation
accesses banks 3-6. This is shown as “Attempt 1” for cache
800B in FIG. 8. After “Attempt 17, the mask for the store
operation may be updated to indicate which banks have been
written, and this is shown as mask 805B in FIG. 8. In one
embodiment, the mask may include a bit for each portion of
the store operation, wherein the portion size matches the size
of'a bank in cache 800. It is noted that the portions size and
bank size may vary from embodiment to embodiment. The
mask bits may be initialized to ones and then when a portion
is successfully written, the corresponding mask bit may be
cleared to zero. Alternatively, in another embodiment, the
mask bits may be initialized to zeros and then when a portion
is successfully written, the corresponding mask bit may be
set to one.

On the second attempt, the unwritten portions of the store
operation may be written to cache 800. The second attempt
may occur on the subsequent clock cycle to the first attempt,
or there may be one or more intervening clock cycles
between the first attempt and the second attempt. The store
queue and/or load-store unit control logic may determine
which portions are unwritten based on mask 805B. As
shown in FIG. 8, on “Attempt 2”, the remaining unwritten
portions of the store operation are written to cache 800C. It
is assumed for the purposes of this discussion that there were
no load operations which conflicted with the store operation
on Attempt 2. If there had been a load operation which
conflicted with one or more portions of the store operation,
then any portions of the store operation which did not have
a bank conflict with the load operation would get written to
cache 800 and then a third attempt may be performed on a
subsequent clock cycle for any remaining unwritten portions
of the store operation. After Attempt 2, the mask may be
updated to indicate all of the data for the store operation has
been written to cache 800, as shown in mask 805C.

In between the first and second attempts to write the store
operation to cache 800B-C, ‘Cache Line 2’ does not have a
full cache line of valid data. However, the data in Cache Line
2 in combination with the store queue entry corresponding
to the store operation has the full cache line of valid data.
Any of various operations may be serviced while Cache
Line 2 does not have a full cache line of up-to-date data
using both the data in cache line 2 and the data in the store
queue entry.

For example, a load trying to read from the partially
written Cache Line 2 may merge data from Cache Line 2 and
the store queue (not shown) while giving priority to the store
queue data. In one embodiment, the load may utilize mask
805B to determine which data should be read from Cache
Line 2 and which data should be read from the store queue.
Alternatively, the load may wait until the store has success-
fully written all of its data to Cache Line 2 before executing
the load.

In another example, an eviction of Cache Line 2 of cache
800B due to a fill from a higher level cache may read out
data from Cache Line 2 and merge this data with data from
the store queue. In this case, the data from the store queue
may be prioritized over the data from Cache Line 2. In a
further example, cache 800B may be a [.1 data cache of a
first processor in a multi-processor system, and a second
processor may request access to Cache Line 2. In this
example, cache 800B may be snooped to allow the second
processor access to Cache Line 2. Since Cache Line 2 is
dirty, Cache Line 2 will be provided to the second processor.
The store queue may be read along with Cache Line 2 and
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the data may be merged before being sent to the second
processor. As in the other examples, the store queue data
may be prioritized over the data from Cache Line 2 during
the merge so as to provide the latest data.

Referring now to FIG. 9, a block diagram of one embodi-
ment of a portion of a load-store unit (LSU) 900 is shown.
LSU 900 includes store queue 920 for storing store opera-
tions which are waiting to write data to data array 905. In
one embodiment, data array 905 may be a data array of a
level one (L1) data cache. Store data may be launched from
store queue 920 to store buffer 910. Store buffer 910 may
have any number ‘N’ of entries for storing store operations.
As shown in FIG. 9, entry ‘0’ of store buffer 910 includes a
store operation which has been partially written to data array
905. It may be assumed for the purposes of this discussion
that this store operation conflicted with a load operation on
a portion of the banks of data array 905, which caused only
a portion of the store data to be written to data array 905.

Store mask 915 may include indicators which specify
which data from this store operation still need to be written
to data array 905 on a subsequent clock cycle. In one
embodiment, store mask 915 may include a single entry for
the next scheduled store operation stored in store buffer 910.
In another embodiment, store mask 915 may include mul-
tiple entries for multiple store operations stored in store
buffer 910.

If a subsequent load operation hits on the partially written
cache line of data array 905, the data for this load operation
may be provided by a merge of the data from the partially
written cache line and the data from the corresponding store
queue entry. This merged data is shown as “Final Load
Data” in FIG. 9. Similarly, if data is evicted from the
partially written cache line, the partial data from data array
905 may be merged with data from the corresponding store
queue entry and sent to a higher level cache (e.g., L2 cache)
or memory. Also, if the partially written cache line is
snooped from another core, the partial data from data array
905 may be merged with data from the corresponding store
queue entry and sent to the other core.

Performing stores opportunistically in the presence of
loads allows for a faster drain of stores from store queue 920
by breaking down the need to detect address conflicts
between stores and same cycle loads to physical bank
granularity. For example, a given store operation may con-
flict with back-to-back load operations, and typically the
given store operation may wait until the back-to-back load
operations are performed before being written to data array
905. However, in some scenarios, the given store operation
may be split up into two partial store operations such that
each partial store operation may be performed concurrently
with one of the load operations without a bank conflict. In
this way, while the load operations are being performed in
two clock cycles, the given store operation may be able to
be performed a portion at a time in these two clock cycles,
resulting in a faster completion of the given store operation.

For example, in one scenario, a first store operation may
be ready to access banks 0-7 of data array 905 in a first clock
cycle, a first load operation may be ready to access banks 0-3
in a first clock cycle, and a second load operation may target
banks 4-7 of data array 905 in a second clock cycle, wherein
the second clock cycle is subsequent to the first clock cycle.
When the first load operation accesses banks 0-3 in the first
clock cycle, the portion of the first store operation targeting
banks 4-7 may be performed concurrently with the first load
operation in the first clock cycle. Then, when the second
load operation accesses banks 4-7 in the second clock cycle,
the portion of the first store operation targeting banks 0-3
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may be performed concurrently with the second load opera-
tion in the second clock cycle. In this scenario, the first store
operation is drained more quickly from store queue 920 than
if it were to wait to access data array 905 as a single,
all-or-nothing operation. By enabling a faster drain of stores
from store queue 920, store queue 920 can be sized smaller
than would otherwise be possible. A store queue entry in
store queue 920 may have storage for data, address, and
various read ports and cam ports. Increasing the size of store
queue 920 can be expensive with respect to hardware
requirements, timing impact, and power usage.

Referring now to FIG. 10, one embodiment of a method
1000 for allowing partial store writes opportunistically in the
presence of loads is shown. For purposes of discussion, the
steps in this embodiment are shown in sequential order. It
should be noted that in various embodiments of the method
described below, one or more of the elements described may
be performed concurrently, in a different order than shown,
or may be omitted entirely. Other additional elements may
also be performed as desired. Blocks may be performed in
parallel in combinatorial logic circuitry in any of the load-
store units and/or processors described herein. Blocks, com-
binations of blocks, and/or the flowchart as a whole may be
pipelined over multiple clock cycles.

In one embodiment, a store may be ready to write to the
L1 data cache (block 1005). As part of initializing the store,
a partial-write indicator corresponding to the store may be
set to 0. The store may be buffered in the store queue until
the store is ready to be written to the L1 data cache. Next,
it may be determined if there are any events that would stall
the store pipeline and prevent the store from writing to the
L1 data cache (conditional block 1010). Various events may
cause a stall, such as the processor pipeline being redirected,
a branch misprediction, a pipeline flush, an exception, or
other events. If there is a stall that prevents the store from
writing to the [.1 data cache (conditional block 1010, “yes”
leg), then method 1000 may remain at conditional block
1010 until the stall clears. If there are no stalls to prevent the
store from writing to the L1 data cache (conditional block
1010, “no” leg), then the load-store unit (LLSU) control logic
may determine if there is a load trying to read from the L1
data cache in the same cycle (conditional block 1015).

If there are no loads trying to read from the L1 data cache
in the same cycle (conditional block 1015, “no” leg), then
the store may perform a full write to the .1 data cache (block
1020). After block 1020, the store is complete and ready to
retire (block 1055). If there is a load trying to read from the
L1 data cache in the same cycle (conditional block 1015,
“yes” leg), then the control logic may determine if the store
has a bank conflict with the load on a bank-by-bank basis
(conditional blocks 1030A-N). Each block 1030A-N repre-
sents each bank of the [.1 data cache which is targeted by the
store, with the number of banks varying depending on the
embodiment. Similarly, blocks 1035A-N and blocks
1040A-N are performed at bank granularity for each bank of
the L1 data cache which is targeted by the store.

For each bank targeted by the store, if there is a bank
conflict with the load (conditional block 1030A-N, “yes”
leg), then the bank is not written by the store and the
partial-write indicator is set to ‘1’ (block 1040A-N). If there
is not a bank conflict with the load (conditional block
1030A-N, “no” leg), then the bank may be written by the
store and the bytes may be removed from the corresponding
store byte mask (block 1035A-N). After blocks 1035A-N
and blocks 1040A-N, the control logic may determine if the
partial-write indicator is set to ‘1’ (conditional block 1045).
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Ifthe partial-write indicator is set to 1’ (conditional block
1045, “yes” leg), then the store needs to retry to write the
unwritten bytes and the partial-write indicator may be reset
to ‘0’ (block 1050). After block 1050, method 1000 may
return to block 1010 to attempt to write the store data which
was not written during the previous write attempt. Depend-
ing on the scenario and the number of concurrent, conflicting
load operations, method 1000 may be executed multiple
times for a single store operation, performing multiple
partial writes until all of the data of the store operation has
been written to the L1 data cache. If the partial-write
indicator is set to ‘0’ (conditional block 1045, “no” leg), then
the store is complete and ready to retire (block 1055). After
block 1055, method 1000 may end.

Turning next to FIG. 11, a block diagram of one embodi-
ment of a system 1100 is shown. As shown, system 1100
may represent chip, circuitry, components, etc., of a desktop
computer 1110, laptop computer 1120, tablet computer 1130,
cell phone 1140, television 1150 (or set top box configured
to be coupled to a television), or otherwise. In the illustrated
embodiment, the system 1100 includes at least one instance
of IC 300 (of FIG. 3) coupled to an external memory 1102.

1C 300 is coupled to one or more peripherals 1104 and the
external memory 1102. A power supply 1106 is also pro-
vided which supplies the supply voltages to IC 300 as well
as one or more supply voltages to the memory 1102 and/or
the peripherals 1104. In various embodiments, power supply
1106 may represent a battery (e.g., a rechargeable battery in
a smart phone, laptop or tablet computer). In some embodi-
ments, more than one instance of IC 300 may be included
(and more than one external memory 1102 may be included
as well).

The memory 1102 may be any type of memory, such as
dynamic random access memory (DRAM), synchronous
DRAM (SDRAM), double data rate (DDR, DDR2, DDR3,
etc.) SDRAM (including mobile versions of the SDRAMs
such as mDDR3, etc., and/or low power versions of the
SDRAMs such as LPDDR2, etc.), RAMBUS DRAM
(RDRAM), static RAM (SRAM), etc. One or more memory
devices may be coupled onto a circuit board to form memory
modules such as single inline memory modules (SIMMs),
dual inline memory modules (DIMMs), etc.

The peripherals 1104 may include any desired circuitry,
depending on the type of system 1100. For example, in one
embodiment, peripherals 1104 may include devices for
various types of wireless communication, such as wifi,
Bluetooth, cellular, global positioning system, etc. The
peripherals 1104 may also include additional storage,
including RAM storage, solid state storage, or disk storage.
The peripherals 1104 may include user interface devices
such as a display screen, including touch display screens or
multitouch display screens, keyboard or other input devices,
microphones, speakers, etc.

Referring now to FIG. 12, one embodiment of a block
diagram of a computer readable medium 1200 including one
or more data structures representative of the circuitry
included in IC 300 (of FIG. 3) is shown. Generally speaking,
computer readable medium 1200 may include any non-
transitory storage media such as magnetic or optical media,
e.g., disk, CD-ROM, or DVD-ROM, volatile or non-volatile
memory media such as RAM (e.g. SDRAM, RDRAM,
SRAM, etc.), ROM, etc., as well as media accessible via
transmission media or signals such as electrical, electromag-
netic, or digital signals, conveyed via a communication
medium such as a network and/or a wireless link.

Generally, the data structure(s) of the circuitry on the
computer readable medium 1200 may be read by a program
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and used, directly or indirectly, to fabricate the hardware
comprising the circuitry. For example, the data structure(s)
may include one or more behavioral-level descriptions or
register-transfer level (RTL) descriptions of the hardware
functionality in a high level design language (HDL) such as
Verilog or VHDL. The description(s) may be read by a
synthesis tool which may synthesize the description to
produce one or more netlists comprising lists of gates from
a synthesis library. The netlist(s) comprise a set of gates
which also represent the functionality of the hardware
comprising the circuitry. The netlist(s) may then be placed
and routed to produce one or more data sets describing
geometric shapes to be applied to masks. The masks may
then be used in various semiconductor fabrication steps to
produce a semiconductor circuit or circuits corresponding to
the circuitry. Alternatively, the data structure(s) on computer
readable medium 1200 may be the netlist(s) (with or without
the synthesis library) or the data set(s), as desired. In yet
another alternative, the data structures may comprise the
output of a schematic program, or netlist(s) or data set(s)
derived therefrom.

While computer readable medium 1200 includes a repre-
sentation of IC 300, other embodiments may include a
representation of any portion or combination of portions of
1C 300 (e.g., load-store unit).

It should be emphasized that the above-described embodi-
ments are only non-limiting examples of implementations.
Numerous variations and modifications will become appar-
ent to those skilled in the art once the above disclosure is
fully appreciated. It is intended that the following claims be
interpreted to embrace all such variations and modifications.

What is claimed is:
1. A processor comprising:
a cache comprising a plurality of banks, wherein each
bank of the plurality of banks can be accessed inde-
pendently of other banks;
wherein the processor is configured to:
detect that a first store operation of data conflicts with
a first load operation in a first clock cycle in at least
one bank of the cache;

perform a first partial write of a first portion of the data
to the cache in the first clock cycle, wherein the first
portion of the data is less than all of the data;

perform the first load operation by reading from the
cache in the first clock cycle;

delay a second partial write of a second portion of the
data to the cache until a subsequent clock cycle,
wherein the second portion of the data conflicts with
the first load operation;

maintain a first mask for each portion of a plurality of
portions of the first store operation; and

update the first mask to indicate the first portion of the
first store operation has been written to the cache in
the first clock cycle.

2. The processor as recited in claim 1, wherein the cache
comprises a plurality of cache lines, wherein the first store
operation targets a first cache line, wherein the first load
operation targets a second cache line, and wherein the first
cache line is different than the second cache line.

3. The processor as recited in claim 2, further comprising
a store queue configured to buffer store operations that target
locations in the cache, wherein the first store operation is
buffered in the store queue until the first store operation is
written in its entirety to the cache.
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4. The processor as recited in claim 3, wherein prior to
performing the second partial write of the second portion of
the first store operation to the first cache line, the processor
is configured to:

detect that a second load operation is scheduled to read

data from the first cache line;

merge the second portion of the first store operation in the

store queue with the first portion of the first store
operation from the first cache line; and

provide the merged data for the second load operation.

5. The processor as recited in claim 3, wherein prior to
performing the second partial write of the second portion of
the first store operation to the first cache line, the processor
is further configured to:

detect that a first snoop operation targets the first cache

line;

merge the second portion of the first store operation in the

store queue with the first portion of the first store
operation from the first cache line; and

provide the merged data for the first snoop operation.

6. The processor as recited in claim 3, wherein prior to
performing the second partial write of the second portion of
the first store operation to the first cache line, the processor
is further configured to:

evict the first cache line from the cache;

merge the second portion of the first store operation in the

store queue with the first portion of the first store
operation from the first cache line; and

write back the merged data to a higher level cache.

7. A load-store unit (LSU) comprising:

a load queue;

a store queue; and

a cache, wherein the cache comprises a plurality of cache

lines, and wherein each cache line of the plurality of
cache lines comprises a plurality of banks;

wherein the LSU is configured to:

detect a conflict for access to the cache between a first
store operation of data and a first load operation in a
first clock cycle;
responsive to detecting the conflict for access to the
cache between the first store operation and the first
operation in the first clock cycle:
write a first portion of the data to the cache in the first
clock cycle, wherein the first portion of the data is
less than all of the data;
perform the first load operation in the first clock
cycle; and
delay a second partial write of a second portion of the
data to the cache until a subsequent clock cycle;
wherein the first portion of the first store operation targets
one or more first banks of the cache, wherein the
second portion of the first store operation targets one or
more second banks of the cache, and wherein the first
load operation targets the one or more second banks of
the cache; and

wherein the LSU comprises a store mask, and wherein the

LSU is further configured to update the store mask to
indicate the first portion of the first store operation has
been written to the cache in the first clock cycle.

8. The LSU as recited in claim 7, wherein the LSU is
further configured to utilize the store mask to determine
which portions of the first store operation to write to the
cache on a subsequent clock cycle.

9. The LSU as recited in claim 7, wherein the LSU is
further configured to:

perform a second load operation in a second clock cycle,

wherein the second load operation targets at least one
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of the one or more first banks of the cache, and wherein
the second clock cycle is subsequent to the first clock
cycle; and

write the second portion of the first store operation to the

one or more second banks of the cache in the second
clock cycle responsive to determining the second load
operation does not target any of the one or more second
banks of the cache.

10. The LSU as recited in claim 7, wherein the first store
operation targets a first cache line of the cache, wherein the
first load operation targets a second cache line of the cache,
and wherein the first cache line is different than the second
cache line.

11. The LSU as recited in claim 9, wherein the first and
second portions of the first load operation are the first load
operation in its entirety.

12. A method comprising:

maintaining a first mask for a first store operation of data,

wherein the first store operation is stored in a store
queue, wherein the first store operation targets a loca-
tion of a first cache line of a cache, and wherein the first
mask indicates which portions of the first store opera-
tion have been written to the first cache line;

writing only a first portion of the data to the first cache line

in a first clock cycle responsive to detecting a conflict
with a first load operation in the first clock cycle for one
or more other portions of the first store operation,
wherein the first portion of the data is less than all of the
data; and

updating the first mask to indicate that the first portion has

been written to the first cache line.

13. The method as recited in claim 12, further comprising
writing the one or more other portions of the first store
operation to the first cache line in a subsequent clock cycle
responsive to determining there are no conflicts with con-
current load operations in the subsequent clock cycle.
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14. The method as recited in claim 12, further comprising:
writing a second portion of the first store operation to the
first cache line in a second clock cycle responsive to
determining there are no conflicts between the second
portion of the first store operation and any concurrent
load operations, wherein the second clock cycle is
subsequent to the first clock cycle;
updating the first mask to indicate that the second portion
has been written to the first cache line; and
delaying writing of a third portion of the first store
operation to the first cache line in the second clock
cycle responsive to determining there is a conflict
between the third portion of the first store operation and
one or more concurrent load operations during the
second clock cycle.
15. The method as recited in claim 14, further comprising:
detecting a second load operation targeting the first cache
line prior to writing the first store operation in its
entirety to the first cache line;
merging data from the first cache line with data from the
first store operation in the store queue; and
providing the merged data for the second load operation.
16. The method as recited in claim 15, further comprising
utilizing the first mask to determine which portions of the
first store operation in the store queue to provide for the
second load operation and which portions of the first cache
line to provide for the second load operation.
17. The method as recited in claim 14, further comprising:
attempting to write the first store operation to the first
cache line in a third clock cycle, wherein the third clock
cycle is subsequent to the second clock cycle; and
utilizing the first mask to determine which portions of the
first store operation should be written to the first cache
line in the third clock cycle.
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